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Abstract

For a broad range of applications, the most important transport property of porous media is permeability. Here we calculate the permeability
of pore network approximations of porous media as simple diagenetic or shrinking processes reduces their pore spaces. We use a simple
r fixed factor,
t els, we use
p alculations
s g
p e sizes and
s e
k origin; the
k ng the
m re
s olling
p ity
r
φ between
k

©

K

1

t
t
t
t
t
i

and
tions,
per-
per-
th
dels
bil-
e
ck
een

may

1
d

andom bond-shrinkage mechanism by which porosity is decreased; a tube is selected at random and its radius is reduced by a
he process is repeated until porosity is reduced either to zero or a preset value. For flow simulations at selected porosity lev
recise Monte Carlo calculations and the lattice Boltzmann method with a 9-speed model on two-dimensional square lattices. C
how a simple power-law behavior,k∝ φm, wherek is the permeability andφ the porosity. The value ofm relates strongly to the shrinkin
rocess and extension, and hence to the skewness of the pore size distribution, which varies with shrinking, and weakly to por
hapes. Smooth shrinking produces pore space microstructures resembling the starting primitive material; one value ofmsuffices to describ
versusφ for any value of porosity. Severe shrinking however produces pore space microstructures that apparently forget their

–φ curve is only piecewise continuous, different values ofm are needed to describe it in the various porosity intervals characterizi
aterial. The power-law thus is not universal, a well-known fact. An effective pore length or critical pore size parameter,lc, characterizes po

pace microstructures at any level of porosity. For severe shrinkinglc becomes singular, indicating a change in the microstructure contr
ermeability, and thus flow, thus explainingk–φ power-law transitions. Continuation of the variousk–φ pieces down to zero permeabil
eveals pseudo-percolation thresholdsφ′

c for the porosity of the controlling microstructures. New graphical representations ofk/l2c versus
− φ′

c for the variousφ intervals display straight and parallel lines, with a slope of 1. Our results confirm that a universal relationship
/l2c andφ should not be discarded.
2005 Published by Elsevier B.V.
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. Introduction

As our conceptual understanding and numerical expertise
o simulate more and more complex flow and transport sys-
ems increase, the accuracy of current simulations hinges on
he quality and completeness of input and system parame-
ers. This is true in modeling flow in oil and gas rocks, de-
ermining flow in underground reservoirs and fate of chem-
cal contaminants in the vadose zone, assessing the effec-
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E-mail address:petoledo@udec.cl (P.G. Toledo).

tiveness of leaching processes, and optimizing filtration
sedimentation operations. For a broad range of applica
the most important transport property of porous media is
meability. Until the 1980s, numerous relations between
meability (k) and porosity (φ) were proposed, starting wi
the Kozeny–Carman relation based on capillary tube mo
[1,2], however all seem to lack universality and predicta
ity. For a review of the history of thek–φ relationships, se
for instance,[3]. In the 1980s, the diagenetic origin of ro
pore space and the geometric-topologic similarities betw
sedimentary rocks led Katz and Thompson (K&T)[4] to the
idea than certain common elements of pore formation
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be universal and as such may be described by a fundamental
growth model. In 1986 the same authors proposed an ap-
proach to flow in porous rocks leading to accurate descrip-
tions of permeability and electrical conductivity of sandstone
rocks[5]. In their approach permeability is related to the for-
mation factor of the rock through a single effective pore di-
ameter measured from a mercury injection experiment, but
not directly to the porosity. K&T permeability relation have
probed valid for essentially all porous rocks and for a broad
class of porous media. Since their introduction the method has
seen growing recognition, although the pressure and temper-
ature dependence of properties yet have not been examined
with the model. Considering that in situ properties at ele-
vated pressure and temperature are often the most relevant
rock properties, the existence of unexplained experimental
data on properties of porous media under compaction, and
the question on the capability of the K&T relation to de-
scribe in situ conditions recently led Rozas[6–8] to study the
k–φ relationship of porous materials under compaction. Ex-
perimental permeability–porosity data of porous rocks and
some other materials under compaction reveal at least three
types of behavior: (1) permeability scales with porosity with
a unique exponent in the entire porosity range, (2) perme-
ability shows one scaling at high porosity and another in the
neighborhood of a critical porosity thresholdφ′

c in which the
transport properties decay steeply, and (3) the scaling of per-
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draulic conductance of rectangular tubes, with lengthl and
regular square cross sections circumscribing circles of radius
r, is g=πr3/8µl, whereµ is the fluid viscosity. Nodes have
infinite conductance. A uniform pore tube radius distribution
between 1 and 2�m, which we calledU(1, 2), is used for dec-
orating the underlying lattices for predictions of permeability
as a function of porosity.

2.2. Pore shrinkage

In the usual bond-percolation problem, the radius or the
conductance of an element chosen at random is set to 0. Rep-
etition of this procedure results in a finite conduction thresh-
old pc for the conductive network. Belowpc the network
becomes disconnected and ceases to conduct. The forma-
tion of a sedimentary rock and the consolidation of particles
during a sedimentation process, however, follow a different
process. Regardless of the overburden pressure exerted on
a given porous material or the number, size, and shape of
particles deposited on pore walls, the probability of a pore
becoming completely sealed to fluid flow is very small. In
1984, Wong et al.[14] introduced a random bond-shrinkage
mechanism by which the porosity of a porous material can
be varied (decreased) in much the same qualitative way as
real rocks and sediment structures do. The interesting feature
of this simple diagenetic model is that it has zerop . Here
w oros-
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eability with porosity in a given material is valid only
orosity ranges. Examples can be found in permeability

or Fontainebleau sandstone[9], fused glass spheres[10],
intered glass beads, resin-cemented glass beads and
eservoir sandstones[11], hot-pressed calcite[12], and fibe
lters and pressed fiber mats[13]. All these behaviors are we
xplained by Rozas[6–8], at the center are first-order po
icrostructure transitions very well tracked by the K&T

ective pore length. Rozas[6–8] has shown that Monte Car
ermeability data from two- and three-dimensional netw
nder compaction may not always follow the K&T relati

Here we study thek–φ relationship in two-dimension
etworks with a shrinking tube model using stationary fl
imulations of an incompressible fluid. Special atten
s placed on pore space microstructure transitions du
hrinking. Monte Carlo (MC) simulations on large netwo
nd lattice Boltzmann (LB) calculations are used to de
ine permeability as the shrinking process advances.
raphical representations ofk/l2c versusφ − φ′

c for the vari-
us porosity intervals display straight and parallel lines,
slope of 1, confirming that a universal relationship betw
/l2c andφ should not be discarded.

. Pore space model

.1. Pore network

We use two-dimensional square networks of rectang
onds, or tubes, and nodes as underlying lattices. Th
al

c
e use this model to study pore space variations with p

ty and the impact on permeability. In Wong’s model a t
s selected at random and its radius (or conductance)
uced by a fixed shrinking factorλ, ri → λri where 0≤ λ < 1,

his process is repeated untilφ is reduced either to zero
preset value. The length of the poresl remains unchange
uring the shrinking process. Sinceφ andk of a rectangula

ube are proportional, respectively, tor andr3, they decreas
espectively, by a factor ofλ andλ3. We neglect the node
t which the tubes meet. The model has three attractive

ures: (i) preserves the network connectivity for anyλ > 0 in
heφ = 0 limit, (ii) the amount of change inri at any step o
he simulation depends on the value ofri at that time, an
iii) the limit λ = 0 corresponds to the classical percola
roblem.

.3. Effective pore length or critical pore size

The critical path of a conductive material is set by
luster of pores offering the smaller resistance to tran
hrough the material[15]. The pressure	Pc needed for th
ormation of an infinite conductive cluster defines an effec
ore length or critical pore sizelc for the entire medium[5].

c represents the smallest pore size such that the set o
izes greater thanlc still forms and infinite, connected clust

c is determined here in each stage of the shrinking pro
y MC simulation of mercury injection experiments.

In rectangular poreslc =γ cosθ/	Pc, where γ is
85 dyn/cm for mercury andθ measured through the m
ury phase is 130◦.
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3. Flow models

3.1. Monte Carlo

The distribution of nodal potentials in a “decorated” lat-
tice or pore network with any level of porosity is calculated
by an iterative solution of Kirchhoff’s equations of current
conservation at nodes. A nodal fluid material balance leads to
a system of linear equations,Gp=b, whereG is a matrix of
pore tube conductances,p is a vector containing the unknown
pressures, andb is a vector depending on the pore pressures
at the network upper and lower boundaries and the conduc-
tances of the pore tubes connected to these boundaries. For
example, in two dimensions for a square network, a typical
material balance in a node leads to

gX(x, y)P(x − 1, y) + gY (x, y)P(x, y − 1) − [gX(x, y)

+ gY (x, y) + gX(x + 1, y) + gY (x, y + 1)]P(x, y)

+ gX(x + 1, y)P(x + 1, y)

+ gY (x, y + 1)P(x, y + 1) = 0,

x = 1, . . . , nX, y = 1, . . . , nY (1)

where (x, y) represents the position of the node inside the
network,gX(x, y) is the conductance of anX-directed pore
s
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3.2. Lattice Boltzmann

The LB method is a numerical scheme for simulating
fluids with complex interfacial dynamics and boundaries
[19–23]. Unlike conventional numerical schemes based on
discretization of macroscopic continuum equations, the LB
scheme is based on microscopic models and mesoscopic ki-
netic equations. The key idea is to construct simplified ki-
netic models incorporating the physics essentials so that the
macroscopic averaged properties obey the desired macro-
scopic equations. In the LB method average fluid particle
populations replace discrete fluid particles. The mean popu-
lations move from node to node on a regular lattice, and are
redistributed at each time step by a collision operator which
conserves mass, momentum and energy. There are a num-
ber of ways for implementing a suitable collision operator. A
simple approach is to apply a relaxation to each population
Ni with a time constant 1/ω, this leads to the single relaxation
time Boltzmann method or BGK-Boltzmann method[23],
named after Bhatnagar et al.[24], i.e.,

Ni = (x+ ci, t + 	t) − N(x, t) = −ω(Ni − N
eq
i ) (2)

whereNi(x, t) is the mean particle population located at lat-
tice sitex at discrete time stept and moving with velocity
c
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egment connecting nodes (x, y) and (x− 1,y), gY(x, y) is the
onductance of aY-directed pore segment connecting no
x, y) and (x, y− 1),P(x, y) is the pressure at node (x, y) and
X andnY are the number of nodes in theX andY direc-
ions, respectively. To find the distribution of nodal press
n the fluid phase network once an external pressure g
nt is imposed we use an iterative solution of the syste
quations. The Monte Carlo results presented here ar

ained with the conjugate gradient method preconditio
y symmetric successive over-relaxation (SSORCG).
ethod is part of the ITPACK routine libraries publicly ava
ble at the web sitehttp://rene.ma.utexas.edu/CNA/ITPAC.

TPACK requires sparse matrix storage. For percolating
ems a preliminary reduction is applied before solving
ystem of linear equations. The method of “burning” of H
mann et al.[16] is used to determine the sample-spann
luster and then, the connected cluster or current-car
ackbone. A bond is not part of the backbone if for topo

cal reasons it is unable to carry current, i.e., if it is part
angling end. After such bonds are eliminated, the rem

ng system of equations is solved with SSORCG met
ith the nodal potentials of the fluid phase network in ha

he flow rate everywhere can be determined, and the
ork conductance in a particular direction computed f
arcy’s law[17,18], i.e., gNet =Q/	P whereQ is the tota
ow rate through the network and	P is the pressure di
erence across the network. The corresponding permea
s k=gNetµL/A, whereµ is the fluid viscosity, andL and

are, respectively, the length and width of the pore
ork.
i towards the neighboring lattice site located atx+ci . Eq.
2) is known as evolution equation. The right-hand sid
q.(4) represents the collision between particles or the B

elaxation with time constant 1/ω towards the local equilib
ium populationN

eq
i . Ni is a specific function of the loc

ensity and the local velocity. The parameterω is chosen
o achieve the desired kinematic viscosity of the fluid,
= (2/ω − 1)/6, ω determines all transport properties of

esulting fluid. The scheme is linearly stable for 0 <ω < 2.
ach evolution cycle, corresponding to one integration
f the LB method, consists of one advection and one re
tion. The above formalism leads to a velocity field that
olution of the Navier–Stokes equations[22].

No-slip wall conditions are implemented by impos
ounce-back-reflection of the populationsNi at solid walls

25,26]. For the simulations here, flow is started from a z
elocity at each node in the computational domain. A pres
radient or forcing factor drives the fluid. A uniform for
ensity in the fluid represents this gradient here[25,26]. To
pproximate infinitely long media, periodic boundaries

mposed on pore network sides open to flow. Lateral netw
ides are impervious.

In two-dimensional simulations, we consider an ortho
al lattice with eight moving populations and one rest po

ation to represent the fluid domain. The orthogonal 9-s
odel is abbreviated by the symbol D2Q9 following the c

ention of Qian et al.[22]. The equilibrium populations fo
he D2Q9 model are given by the following equations[22]:

eq
i = 1

36ρ[1 + 3(ci · u) + 9
2(ci · u)(ci · u) − 3

2(u · u)] (3)

http://rene.ma.utexas.edu/cna/itpack
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for the populations moving along the diagonal directions:

N
eq
i = 1

9ρ[1 + 3(ci · u) + 9
2(ci · u)(ci · u) − 3

2(u · u)] (4)

for the populations moving along the vertical and horizontal
directions, and

N
eq
i = 4

9ρ[1 − 3
2(u · u)] (5)

for the non-moving populations.
The fluid density ρ(x, t) and velocity u(x, t)

are calculated from the populationsNi , respectively,
through the relationsρ(x, t) = ∑8

i=0Ni(x, t) andu(x, t) =
(1/ρ(x, t))

∑8
i=1Ni(x, t)ci. As in previous work[26], we se-

lectω = 1.85 for all the simulations discussed in this work.
Once the steady state is reached, the fluid permeability

is calculated using Darcy’s law[17,18], i.e.,u=−(k/µ)∇P,
where∇P is the macroscopic applied pressure gradient.

4. Results and discussion

Pore size distribution and pore space connectivity are fun-
damental for a suitable geometric-topologic representation
of porous materials. Pore space connectivity should not be
very sensitive to shrinking or compaction unless the process
is severe. In this work, the idealization is used that the pore
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Fig. 1. Unperturbed two-dimensional square network of 12× 25 nodes dec-
orated with a uniformU(1, 2) pore size distribution function.

evolution of pore space of the square network inFig. 1under
various shrinking intensities ranging from weak to strong.
Fig. 3 shows the evolution of theU(1, 2) distribution, for
larger networks of 1,000,000 pores, as shrinking of various
intensities reduces pore size and thus porosity.

TheU(1, 2) distribution shows a smooth evolution when
the pore network suffers smooth shrinking, i.e., forλ = 0.99,
asFigs. 2 and 3areveal. The distribution remains unimodal
and asymmetrically centered around a mean pore size that
decreases with shrinking.Fig. 3a shows increasing asymme-
try of the distribution at early stages of the shrinking process;
such asymmetry decreases markedly towards the end of the
process. This result is suggestive of pore spaces able to con-
serve their original structural characteristics under smooth
shrinking (seeFig. 2 for λ = 0.99). It is highly probable that
real porous materials under this kind of deformation show
no significant pore structural differences, beyond the obvi-
ous porosity change, in two stages of its shrinking history.
Nevertheless, the sole observation of the evolution of the dis-
tribution is not enough to establish definitive conclusions.
Later we see that the effective pore length of each medium,
which fixes the scale of permeability, is the key property to
determine the existence of porous microstructure transitions
as shrinking advances.

The situation changes significantly when the shrinking oc-
curs with greater intensity, here characterized by small values
o -
w ce of
n with
p ini-
t rves
i ains
u ean
p ing of
t cess.
T tion
g . The
s le of
t ears,
g ppears
w ore
p -
pace connectivity remains unchanged except when th
ormation process leads to pore closing. Fluid topology h
ver does change significantly even when shrinking is no
evere. Thus, for a fixed pore space connectivity, the m
copic bulk- and single-phase transport properties in a p
lar state of the system, i.e., fluid topology, are defined

ts pore size distribution function. From here derives our in
st in studying the evolution of this function in pore netwo
ubject to shrinking processes of controlled intensity.

Porous materials can be classified according to the ch
eristics of their pore populations before and during shr
ng. Some materials display a noticeably wide distribu
f pore sizes, they are heterogenous; others however h
arrow distribution, i.e., they display a relatively small
ree of heterogeneity. Another characteristic is the degr
symmetry of the distribution or skewness that reveals c

stence of pore populations with significantly different s
ne of these populations, generally the largest, contro
acroscopic properties of the material. Some materials

ver exhibit a somewhat uniform distribution; for these
ifficult to establish a characteristic pore size controlling
acroscopic properties of the material because nearly

ical pore fractions of each size coexist. The evolution
istribution depends mainly on the elastic properties o
aterial and on the intensity of the shrinking process. In

imulations here the shrinking factorλ accounts for these tw
haracteristics.

Fig. 1 shows an initial unperturbed two-dimensio
quare network of 12× 25 nodes decorated with a unifo
(1, 2) pore size distribution function.Fig. 2 displays the
f λ. Fig. 3b–e shows that theU(1, 2) distribution evolves to
ards a multimodal function as a result of the appearan
ew populations of smaller-sized pores which coexist
art of the primitive pore population of the material. The

ial pore population diminishes with shrinking but conse
ts original shape. The size distribution of these pores rem
nimodal and centered symmetrically around the initial m
ore size; its standard deviation increases at the beginn

he shrinking and diminishes towards the end of the pro
he new pore populations or modes of the size distribu
row at expenses of the larger-sized pore populations
hape of these new modes is a replica on smaller sca
he mode feeding them. A pore population or mode app
rows, reaches a maximum size, decreases, and disa
ith shrinking. The separation of pore populations is m
ronounced for the case of shrinking withλ < 0.3. The ex
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Fig. 2. Sequences of pore space microstructures for two-dimensional square networks undergoing shrinking. Network size is 12× 25 nodes. Pore size distribution
of the unperturbed network (Fig. 1) is a uniformU(1, 2) function. Shrinking factors from left to right are 0.99, 0.5, 0.3, 0.1, and 0. Relative porosities for
microstructure images on a given file are indicated at the left.
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Fig. 3. Evolution of a uniformU(1, 2) pore size distribution in a large two-dimensional square network for a range of shrinking factors (a) 0, (b) 0.1, (c) 0.3,
(d) 0.5, and (e) 0.99.
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treme case forλ = 0, Fig. 3e, corresponds to the classic per-
colation process; the net effect is the split of the initial pore
population in two, one for the open pores and another for the
closed pores. According to these results, pore spaces are un-
able to conserve their original structural characteristics when
exposed to severe deformation processes asFig. 2shows for
small values ofλ. Porous materials at contiguous levels or
stages of this type of shrinking may show differences beyond
the porosity if different pore populations dominate their dis-
tributions of pore sizes, the definitive answer for each pore
network is obtained from the evolution of the effective length
with shrinking.

Shrinking is defined as strong or intense when it causes
radical changes in the porous microstructure of a material.
The behavior of wide pore size distributions is different from
that exhibited by narrow distributions for the same shrinking
factor when this value is small[6,7]. Thus, the value of the
shrinking factor alone is insufficient to conclude respect to
the intensity of a shrinking process. The intensity is defined
mainly by two aspects: the elastic properties of the mate-
rial and the force applied on the material, these two define
the shrinking factorλ and the width of the initial pore size
distribution. Thus, for two materials presenting distributions
of different width but of equal minimum pore size it is more
likely that shrinking processes produce new modes in the nar-
rowest distribution for the sameλ. This effect has important
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The results inFig. 4suggest that weak shrinking,λ = 0.99,
produces media resembling the unshrinked original media,
i.e., all the important details of the media remain;lc evolves
continuously asφ is decreased with shrinking. An observer
of the medium at any level ofφ, beyond the obvious reduc-
tion ofφ, would not perceive significant geometric-topologic
changes in the pore space respect to the original space. The
porous microstructure retains its characteristics throughout
the shrinking process.Fig. 3a support this idea, pore size dis-
tribution remains unimodal and the shrinking effect is limited
to reducing porosity. In other words, the porous microstruc-
ture “remembers” its primitive form. From a geophysical
point of view what we called weak shrinking is simply a
smooth diagenetic process that reducesφ, the class however
remains unchanged; for instance a sandstone continues be-
ing a sandstone although with smaller porosity. It is worth
mentioning that the reduction ofφ from 1 to 0 for the smooth
shrinking (λ = 0.99) is possible only within the framework of
the proposed model. In fact a smooth shrinking regime re-
ducesφ of a material until a finite limit different from zero,
but in the process the porous microstructure retains the char-
acteristics of the primitive material.

As shrinking intensity increases, the case ofλ = 0.5 in
Fig. 4, the behavior oflc becomes erratic, with numerous
and thus far unknown inflections.Fig. 3b suggests these in-
flections are consequence of the appearance of new pore size
d ore
s rop-
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m

r g.
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i ink-
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onsequences on the behavior of the transport propert
ore networks since if some of these new modes with sm
ores dominate the total pore population then the ma
ay suffer a transition in its porous microstructure.
Fig. 4 shows the evolution of the single effective or c

cal pore length of large two-dimensional networks sub
o shrinking processes from weak to strong.lc is calculated
rom MC simulations of mercury injection experimentslc
ndφ are displayed normalized respect to the properties o
nperturbed networks. Networks are 600× 600 nodes deco
ated with the uniform pore size distributionU(1, 2).

ig. 4. Effective pore length vs. porosity for a two-dimensional square
ork decorated with the initialU(1, 2) pore size distribution for vario
hrinking factors.
istribution modes dominating the original single-mode p
ize distribution and thus the porous medium geometric p
rties. As shrinking intensity increases,λ < 0.5, these inflec

ions in lc result in discontinuities revealing clear pore sp
icrostructure transitions.
The results inFig. 4for strong shrinking regimes,λ < 0.3,

eveal clear transitions inlc asφ decreases with shrinkin
c is continuous by parts only, exhibiting transitions at fi
ritical porosities, pseudo-critical strictly. These transiti
re associated with strong changes in the distribution of
izes, including the appearance of new modes in the dis
ion asFig. 3c–e shows. Continuous pieces oflc correspond
o structurally different porous media. A discontinuity ma

transition from a more “open” porous microstructure
ore “closed” one, the size of the pores controlling the tr
ort properties of the latter decreases sharply. The new
rostructure “forgets” its origin, its memory is only enoug
emember the microstructure at the beginning of the con
us piece oflc to which it belongs. From a geophysical po
f view what we refer here to strong shrinking may be ass
ted with strong diagenetic processes that not only reduc
orosity but also transforms one porous microstructure
nother changing its class or lithology in the process.
xample, the geophysical and geochemical transform
f a weakly cemented clean sand into a strongly ceme
ineral-inclusion-rich sand changes a porous microstru

nto a radically different one. As in the case of weak shr
ng, the reduction of porosity from 1 to 0 and the multi

icrostructural transitions of pore space for strong shrin
re possible only within the framework of the model. Actu
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Table 1
Pseudo-critical porosities at whichlc becomes discontinuous for a two-
dimensional square network decorated with the initialU(1, 2) pore size
distribution for various shrinking factors

Shrinking factorλ Pseudo-critical porosities

1st inflection 2nd inflection 3rd inflection

0 0.5 – –
0.1 0.5362 0.2230 0.0924
0.3 0.6157 0.3107 0.1600
0.5 0.7071 0.4322 0.2637
0.99 – – –

a strong compaction regime reduces the porosity of a material
until a finite limit different from zero, but in the process it
can produce one or more transformations of microstructures.
The strong shrinking produces richly connected pore spaces
at high porosity and poorly connected ones at low porosity.

Table 1presents the first three pseudo-critical porosities,
seeFig. 4, at which discontinuities inlc occur. Discontinuities
are clearer asλ → 0, i.e., when shrinking is strong.

The effective pore length of a porous material and its tran-
sitions during a shrinking process are closely related to the
permeability of the material, and its pursuit allows to estab-
lish a clear distinction between highly deformable and weakly
deformable materials. This new transition, apparently of first
order, that finds support in experimental data in the litera-
ture, was first identified by Rozas[6,7]. From Fig. 4 it is
easy to establish an analogy between the transition of porous
microstructures and for instance the first-order transition in
fluid phases. Finally, after observing the non-trivial behavior
of lc of pore networks during shrinking, especially its capac-
ity to respond to microstructural changes, Rozas concluded
that it is the appropriate length scale to predict permeabil-
ity and other porous media transport properties. To the light
of these results neither the hydraulic pore diameter nor the
length lambda[27], based on electrical measurements, are
able to capture the wealth and complexity of pore spaces un-
dergoing microstructural transitions.

Next we present results of the evolution experienced by the
permeability of pore networks as the pore space is shrinked. In
the cases studied the results of MC simulations are compared
with estimations based on the LB method. The MC simula-
tion results are based on large square networks of 250× 250
nodes. The LB calculations are based on smaller square net-
works of 12× 25 nodes. The correct performance of the LB
scheme employed here has been tested with several numerical
experiments (see[28] for details).Fig. 5shows the sensitivity
of the LB permeability of two-dimensional square networks
of 12× 25 nodes to factors such as forcing (Fig. 5a) and pore
space discretization (Fig. 5b). Results in these figures corre-
spond to the unperturbed network inFig. 1. For this network
the optimum forcing factor and lattice discretization are 0.05
and 2030 (along the main flow)× l014, respectively. Results
show that lower porosity networks are more demanding on
discretization for a correct representation of flow therein.

Fig. 6 presents a comparison of MC and LB
permeability–porosity data for square networks decorated
with an initial narrow distribution of pore sizeU(1, 2) for
five shrinking factors, i.e.,λ = 0, 0.1, 0.3, 0.5 and 0.99. In
all cases ofλ, the LB permeability tracks the MCk–φ curve
extremely well.

Fig. 6a shows that forλ = 0.99 the permeability of the
square network follows a simple power-law type dependency
with the porosity, that is,k∝ φm. A single value ofm suf-
fi
t
K
t o
d e-
t
a
p n
f
a udo-
c
φ

F l squar (b)
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ig. 5. Sensitivity of lattice Boltzmann permeability of two-dimensiona
attice size for forcing factor 0.05.
ces to describe the relationk–φ for any porosity in this
ype of shrinking. The value for this exponent ism= 3, the
ozeny–Carman limit. A close inspection ofFig. 6b shows

hat for λ = 0.5 more than one value ofm is necessary t
escribe thek–φ relation. For the high porosity range, b

ween the pseudo-critical porosityφc = 0.7071 (seeTable 1
ndFig. 4) andφ = 1, again the exponent ism= 3. For lower
orosities, belowφc = 0.7071,m> 3. Similar is the situatio

or λ = 0.3 inFig. 6c, the lower value for the exponent ism= 3
nd occurs in the high porosity range between the pse
ritical porosityφc = 0.6157 (seeTable 1and Fig. 4) and
= 1. The inflections at lower porosities inFig. 6b and c

e networks of 12× 25 nodes to (a) forcing factor for various lattice sizes and
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Fig. 6. Permeability–porosity data for two-dimensional square networks undergoing shrinking. Comparison of Monte Carlo and lattice Boltzmann results. The
initial pore radii distribution isU(1, 2). Shrinking factors are (a) 0.99, (b) 0.5, (c) 0.3, (d) 0.1, and (e) 0.

are not first-sight apparent. Forλ = 0.1 however a nonlinear
behavior of the permeability curve inFig. 6d is clear. The in-
flection point at the relatively high pseudo-critical porosity,
φc = 0.5362 is a consequence of different pore populations
controlling permeability in different stages of the shrinking

process. Inflection points at lower porosities thanφc = 0.5362
are not shown inFig. 6d. More than one value ofm is neces-
sary to describe thek–φ relation, the lower value ism= 3 and,
as expected, occurs when porosity tends to 1. As mentioned
before, the narrow distributionU(1, 2) shows multiplicity of
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modes or pore populations forλ = 0.1 (Fig. 3d), which in
principle explains the inflection points and the existence of
different porous microstructures before and after these points.
Fig. 6d shows that forλ = 0 the behavior of permeability is
that of the transport properties in the classic percolation prob-
lem, the novelty being that the critical point for all the cases
studied in the square network occurs at a normalized poros-
ity, equal to 0.5, identical to the percolation thresholdpc in
the same network. The same occurs in the case of the electri-
cal conductivity[6]. When the pore volume of the network
has been reduced in a 50%, an infinite conductive cluster of
pores does not exist, and implies necessarily that half of the
connections have been eliminated. We have proved that when
λ = 0 the normalized porosity is exactly equal to the fraction
p of conductors in the square network. Qualitatively, when
λ = 0 the shrinking is equivalent to a random elimination of
bonds in the network. It is a percolation process and thus the
conductor–insulator transition state of the network, which
is independent of the distribution of pore sizes, the defini-
tion of the conductance elements, and of some other details,
depends exclusively on the dimensionality of the network.
In Fig. 6e, the lower value for the exponent in the relation
k∝ φm ism= 3 and, as expected, occurs when porosity tends
to 1.

An important body of experimental permeability data for
diverse classes of porous materials under compaction shows
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was deduced for three-dimensional media, specifically rocks
and consolidated sands[5].

Fig. 7 displaysk versusc1l
2
c/F for 2D square networks

decorated withU(1, 2) pore size distribution.
Results inFig. 7show that Eq.(6) is valid forλ = 0.99 in

the entire porosity range and forλ < 0.99 only in the porosity
range between the first pseudo-critical and 1 (seeFigs. 4 and 6
andTable 1). Forλ < 0.99,Fig. 7displays a significant depart
from the 45◦ line in the porosity range between 0 and the first
pseudo-critical, exactly in the region not studied thus far.
Fig. 7 emphasizes the need for better LB data, particularly
at low porosity. Rozas[6–8] have shown for various network
dimensionalities, pore size distributions and shrinking factors
that allk − c1l

2
c/F curves show the same behavior as inFig. 7.

The prefactor in Eq.(6) is c1 = F0/l2c0, calculated in the
φ → 1 limit. The results inFig. 7are important because they
test for the first time the universality of the K&T relation.
The practical importance of this result is easy to anticipate.
When Eq.(6) applies, the only parameter of this relation,c1,
has physical meaning and can be determined with a single
experimentalk–φ data point.

According to the discussion above, a continuous section
of lc–φ curve corresponds to a porous microstructure that
only reduces its porosity during a shrinking process. This mi-
crostructure controls the permeability of the material in that
section. In the transition, the control of permeability switches
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ionk∝ φm is adjusted by porosity sections. Recently Ma
nd Nur[10] adjusted the relationk∝ (φ − φc)3 to various
andstones with remarkable success,φc is a pseudo-critica
orosity acting as a fitting parameter. Mavko and Nur ne

heless do not provide a physical meaning forφc, they do no
ecognize the existence of an effective length of the pore s
nd even less suggest the existence of an inflection po

ower porosity thanφc in the permeability curves examine
n the simulation ground, Wong et al.[14] could not calcu

ate permeability forλ < 0.25 with the shrinking tube mod
nd thus missed the transitions completely. The macros
roperties of pore networks are related next through sc

aws.
First we consider the K&T relation[5] between perme

bility, formation factorF and effective length, i.e.,

= c1k0
l2c

F
(6)

hereF≡ σ0/σ, σ is the electrical conductivity of a poro
edium saturated with fluid with conductivityσ0. Eq. (6)
-

rom this microstructure to another. When the MC and LB
ults are represented in the formk/l2c versusφ, see schemat
n Fig. 8, a linear behavior is observed in the sections co
ponding to each permeability regime, with slight deviat
ear the transition regions. That is, the following relatio
alid for each porosity section,

k

l2c
= c2(φ + b) (7)

ig. 7. Katz–Thompson permeability scaling for a two-dimensional sq
etwork decorated with an initial radii distributionU(1, 2) for differen
hrinking factors.
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Fig. 8. Schematic representation of the method for determining pseudo-
critical porosities at a given pore length transition.

whereb is thek/l2c intercept of this trial linear function. Now,
if a given linear permeability regime is extrapolated until a
hypothetical state of porosity for which permeability is zero,
the result isb = −φ′

c. That is, the termφ′
c, here denominated

pseudo-critical porosity, corresponds to the porosity of a hy-
pothetical conductor–insulator transition that results from the
extrapolation of the given permeability regime. The corre-
spondingφ′

c for each permeability regime may be determine
in the same manner.

Then, we postulate the following ansatz for the permeabil-
ity:

k

l2c
= c2(φ − φ′

c) (8)

The prefactor in Eq.(8) isc2 = (k0/l2c0)/(φ0 − φ′
c), wherek0,

lc0, andφ0 pertain to the initial point andφ′
c to the pseudo-

critical porosity of each permeability regime.
As it is shown inFig. 9, Eq. (8) has universal character

and is suitable for representing experimental data for each
permeability regime or section. Rozas[6–8] has shown this
character for various network dimensionalities, pore size dis-
tributions and shrinking factors.

Relation(8) is an alternative to the K&T relation to ex-
trapolate and to interpolate permeability with certainty from
experimental data. The parameters of this relation may be in-
f ity is
n tter
L tical
p

Fig. 9. Permeability scaling with porosity for a two-dimensional square net-
work decorated with an initial radii distributionU(1, 2) for different shrinking
factors.

5. Conclusions

New graphical representations ofk/l2c versusφ − φ′
c for

various pore networks under shrinking display straight and
parallel lines, with a slope of 1, suggesting that a universal re-
lationship betweenk/l2c andφ may be possible. At the hart are
pore space microstructure transitions driven by the shrinking
process. These transitions are associated with changes in the
distribution of pore sizes, more precisely in the appearance
of new modes in the distribution eventually controlling the
transport properties. The new pore populations or modes of
the distribution grow at expenses of the larger-sized pore pop-
ulations. A pore population or mode appears, grows, reaches a
maximum size, decreases and disappears with shrinking. Our
results show that the old theory of Kozeny–Carman, derived
for oversimplified porous media, contains some elements of
the newk–φ. The problem is that the intrinsic limitations
of the Kozeny–Carman relation have been increased by the
need to fit scarce experimental data with aims of interpolat-
ing and extrapolating information. This need has remained
for more than five decades and continues at present in spite
of the clarifying works of Katz and Thompson[5], Wong et
al.[14] and Roberts and Schwartz[29] by the end of the 1980s
and beginning of the 1990s. Risky practices in the process-
ing of permeability data include (1) the use of the theory of
Kozeny–Carman with a constant effective lengthl along the
e re-
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erred from three experimental points; data on conductiv
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B data, particularly at low porosity and near pseudo-cri
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c
ntire process of permeability reduction, (2) the simple
lacement of thelc associated to the pore space by the m
ize of particles or grains that conform the solid mate
f granular or of pseudo-grains if the solid material is c
olidated with undefined grain, and (3) the extrapolatio
ermeability ignoring the existence of microstructure tra

ions. Results in the literature are varied, but in general w
he adjustment ofk–φ data is carried out by means of pow
aw relations using a constantlc and avoiding a parameter
ransition porosity, the sensitivity of the exponent to poro
s great. In some cases exponents from 3 to 8 are req
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for a given material (see, e.g.[9]). These high exponents, to
the light of the results presented here, are necessary because
the data adjusted is in the vicinity of a permeability transition
point. This situation is especially dangerous because implies
extrapolation of permeability data, controlled by one type of
microstructure, to a zone where permeability is controlled by
a different microstructure.
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