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Abstract

For a broad range of applications, the most important transport property of porous media is permeability. Here we calculate the permeability
of pore network approximations of porous media as simple diagenetic or shrinking processes reduces their pore spaces. We use a simple
random bond-shrinkage mechanism by which porosity is decreased; a tube is selected at random and its radius is reduced by a fixed factor,
the process is repeated until porosity is reduced either to zero or a preset value. For flow simulations at selected porosity levels, we use
precise Monte Carlo calculations and the lattice Boltzmann method with a 9-speed model on two-dimensional square lattices. Calculations
show a simple power-law behavidrx ¢™, wherek is the permeability ang the porosity. The value af relates strongly to the shrinking
process and extension, and hence to the skewness of the pore size distribution, which varies with shrinking, and weakly to pore sizes and
shapes. Smooth shrinking produces pore space microstructures resembling the starting primitive material; onm saltiees to describe
k versusyp for any value of porosity. Severe shrinking however produces pore space microstructures that apparently forget their origin; the
k—¢ curve is only piecewise continuous, different valuesrodire needed to describe it in the various porosity intervals characterizing the
material. The power-law thus is not universal, a well-known fact. An effective pore length or critical pore size pataiobtacterizes pore
space microstructures at any level of porosity. For severe shrihkbecomes singular, indicating a change in the microstructure controlling
permeability, and thus flow, thus explainikgy power-law transitions. Continuation of the varidugp pieces down to zero permeability
reveals pseudo-percolation threshoddsfor the porosity of the controlling microstructures. New graphical representatiohg’ofiersus
¢ — ¢ for the variousp intervals display straight and parallel lines, with a slope of 1. Our results confirm that a universal relationship between
k/ 2 and¢ should not be discarded.
© 2005 Published by Elsevier B.V.
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1. Introduction tiveness of leaching processes, and optimizing filtration and
sedimentation operations. For a broad range of applications,
As our conceptual understanding and numerical expertisethe most important transport property of porous media is per-
to simulate more and more complex flow and transport sys- meability. Until the 1980s, numerous relations between per-
tems increase, the accuracy of current simulations hinges onmeability k) and porosity ¢) were proposed, starting with
the quality and completeness of input and system parame-the Kozeny—Carman relation based on capillary tube models
ters. This is true in modeling flow in oil and gas rocks, de- [1,2], however all seem to lack universality and predictabil-
termining flow in underground reservoirs and fate of chem- ity. For a review of the history of thk— relationships, see
ical contaminants in the vadose zone, assessing the effecfor instance[3]. In the 1980s, the diagenetic origin of rock
pore space and the geometric-topologic similarities between
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be universal and as such may be described by a fundamentatiraulic conductance of rectangular tubes, with lerigtind
growth model. In 1986 the same authors proposed an ap-regular square cross sections circumscribing circles of radius
proach to flow in porous rocks leading to accurate descrip- r, is g=7r3/8ul, wherep is the fluid viscosity. Nodes have
tions of permeability and electrical conductivity of sandstone infinite conductance. A uniform pore tube radius distribution
rocks[5]. In their approach permeability is related to the for- between 1 and @m, which we calledJ(1, 2), is used for dec-
mation factor of the rock through a single effective pore di- orating the underlying lattices for predictions of permeability
ameter measured from a mercury injection experiment, but as a function of porosity.
not directly to the porosity. K&T permeability relation have
probed valid for essentially all porous rocks and for a broad 2.2. Pore shrinkage
class of porous media. Since their introduction the method has
seen growing recognition, although the pressure and temper- In the usual bond-percolation problem, the radius or the
ature dependence of properties yet have not been examined@¢onductance of an element chosen at random is set to 0. Rep-
with the model. Considering that in situ properties at ele- etition of this procedure results in a finite conduction thresh-
vated pressure and temperature are often the most relevanold p; for the conductive network. Beloyw; the network
rock properties, the existence of unexplained experimental becomes disconnected and ceases to conduct. The forma-
data on properties of porous media under compaction, andtion of a sedimentary rock and the consolidation of particles
the question on the capability of the K&T relation to de- during a sedimentation process, however, follow a different
scribe in situ conditions recently led Ro4&s8] to study the process. Regardless of the overburden pressure exerted on
k—¢ relationship of porous materials under compaction. Ex- a given porous material or the number, size, and shape of
perimental permeability—porosity data of porous rocks and particles deposited on pore walls, the probability of a pore
some other materials under compaction reveal at least threebecoming completely sealed to fluid flow is very small. In
types of behavior: (1) permeability scales with porosity with 1984, Wong et al[14] introduced a random bond-shrinkage
a unique exponent in the entire porosity range, (2) perme- mechanism by which the porosity of a porous material can
ability shows one scaling at high porosity and another in the be varied (decreased) in much the same qualitative way as
neighborhood of a critical porosity threshaiglin which the real rocks and sediment structures do. The interesting feature
transport properties decay steeply, and (3) the scaling of per-of this simple diagenetic model is that it has zero Here
meability with porosity in a given material is valid only by  we use this model to study pore space variations with poros-
porosity ranges. Examples can be found in permeability dataity and the impact on permeability. In Wong’s model a tube
for Fontainebleau sandstoii@], fused glass spherg&0], is selected at random and its radius (or conductance) is re-
sintered glass beads, resin-cemented glass beads and sevemdlced by a fixed shrinking factars ri — Arj where 0O< A <1,
reservoir sandstongs1], hot-pressed calcifgd 2], and fiber this process is repeated ungilis reduced either to zero or
filters and pressed fiber mdis]. Allthese behaviorsarewell  a preset value. The length of the pofeemains unchanged
explained by Rozaf5-8], at the center are first-order pore during the shrinking process. Singeandk of a rectangular
microstructure transitions very well tracked by the K&T ef- tube are proportional, respectivelytandr3, they decrease,
fective pore length. Rozd6—8] has shown that Monte Carlo  respectively, by a factor of and3. We neglect the nodes
permeability data from two- and three-dimensional networks at which the tubes meet. The model has three attractive fea-
under compaction may not always follow the K&T relation. tures: (i) preserves the network connectivity for a0 in
Here we study thé&—¢ relationship in two-dimensional  the¢ =0 limit, (ii) the amount of change in at any step of
networks with a shrinking tube model using stationary flow the simulation depends on the valuerpfat that time, and
simulations of an incompressible fluid. Special attention (iii) the limit A =0 corresponds to the classical percolation
is placed on pore space microstructure transitions during problem.
shrinking. Monte Carlo (MC) simulations on large networks
and lattice Boltzmann (LB) calculations are used to deter- 2.3. Effective pore length or critical pore size
mine permeability as the shrinking process advances. New
graphical representations b,flg versusp — ¢y, for the vari- The critical path of a conductive material is set by the
ous porosity intervals display straight and parallel lines, with cluster of pores offering the smaller resistance to transport
a slope of 1, confirming that a universal relationship between through the materidlL5]. The pressuré\P. needed for the
k/ 12 and¢ should not be discarded. formation of an infinite conductive cluster defines an effective
pore length or critical pore sidg for the entire mediunf5].
Ic represents the smallest pore size such that the set of pore

2. Pore space model sizes greater thdgstill forms and infinite, connected cluster.
Ic is determined here in each stage of the shrinking process
2.1. Pore network by MC simulation of mercury injection experiments.

In rectangular poresl;=y cosd/AP.;, where y is
We use two-dimensional square networks of rectangular 485 dyn/cm for mercury and measured through the mer-
bonds, or tubes, and nodes as underlying lattices. The hy-cury phase is 130
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3. Flow models 3.2. Lattice Boltzmann

3.1. Monte Carlo The LB method is a numerical scheme for simulating
fluids with complex interfacial dynamics and boundaries
The distribution of nodal potentials in a “decorated” lat- [19—-23] Unlike conventional numerical schemes based on
tice or pore network with any level of porosity is calculated discretization of macroscopic continuum equations, the LB
by an iterative solution of Kirchhoff’'s equations of current scheme is based on microscopic models and mesoscopic ki-
conservation at nodes. A nodal fluid material balance leads tonetic equations. The key idea is to construct simplified ki-
a system of linear equationSp =b, whereG is a matrix of netic models incorporating the physics essentials so that the
pore tube conductancesis a vector containing the unknown  macroscopic averaged properties obey the desired macro-
pressures, anll is a vector depending on the pore pressures scopic equations. In the LB method average fluid particle
at the network upper and lower boundaries and the conduc-populations replace discrete fluid particles. The mean popu-
tances of the pore tubes connected to these boundaries. Fdations move from node to node on a regular lattice, and are
example, in two dimensions for a square network, a typical redistributed at each time step by a collision operator which

material balance in a node leads to

g Y Px =1 y) + g"(x, y) P(x, y — 1) — [g¥(x. y)
+8" @ )+ + 1))+ &7 (x. y + D]P(x, y)
+¢X(+ 1 )P(x+1,y)
+¢"(x, y+ 1)P(x,y+1) =0,

(1)

x=1...,nx, y=1...,ny
where §, y) represents the position of the node inside the
network, gX(x, y) is the conductance of ax-directed pore
segment connecting nodesy) and & — 1,y), g"(x, y) is the
conductance of &-directed pore segment connecting nodes
(x,y) and & y— 1), P(x, y) is the pressure at nodg, {) and

nyx andny are the number of nodes in théandY direc-
tions, respectively. To find the distribution of nodal pressures
in the fluid phase network once an external pressure gradi-
ent is imposed we use an iterative solution of the system of
equations. The Monte Carlo results presented here are ob
tained with the conjugate gradient method preconditioned
by symmetric successive over-relaxation (SSORCG). This
method is part of the ITPACK routine libraries publicly avail-
able at the web sitettp://rene.ma.utexas.edu/CNA/ITPACK
ITPACK requires sparse matrix storage. For percolating sys-
tems a preliminary reduction is applied before solving the
system of linear equations. The method of “burning” of Her-
rmann et al[16] is used to determine the sample-spanning
cluster and then, the connected cluster or current-carrying
backbone. A bond is not part of the backbone if for topolog-
ical reasons it is unable to carry current, i.e., if it is part of a
dangling end. After such bonds are eliminated, the remain-
ing system of equations is solved with SSORCG method.
With the nodal potentials of the fluid phase network in hand,
the flow rate everywhere can be determined, and the net-
work conductance in a particular direction computed from
Darcy’s law[17,18], i.e., gnet=Q/AP whereQ is the total
flow rate through the network andP is the pressure dif-
ference across the network. The corresponding permeability
is k=gnetL/A, where o is the fluid viscosity, and. and

A are, respectively, the length and width of the pore net-
work.

conserves mass, momentum and energy. There are a num-
ber of ways for implementing a suitable collision operator. A
simple approach is to apply a relaxation to each population
N;j with a time constant 2/, this leads to the single relaxation
time Boltzmann method or BGK-Boltzmann methf28],
named after Bhatnagar et §24], i.e.,

Ni = (X+Ci, 1+ A1) — N(X, 1) = —o(N; — N )
whereN;(x, t) is the mean particle population located at lat-
tice sitex at discrete time stepand moving with velocity

¢ towards the neighboring lattice site locatedkatc;. Eq.

(2) is known as evolution equation. The right-hand side of
Eq.(4) represents the collision between particles or the BGK
relaxation with time constant d/towards the local equilib-
rium populationNieq. N; is a specific function of the local
density and the local velocity. The parametgiis chosen

to achieve the desired kinematic viscosity of the fluid, i.e.,
v=(2/lw —1)/6, w determines all transport properties of the

resulting fluid. The scheme is linearly stable for & <2.
Each evolution cycle, corresponding to one integration step
of the LB method, consists of one advection and one relax-
ation. The above formalism leads to a velocity field that is a
solution of the Navier—Stokes equatiddg].

No-slip wall conditions are implemented by imposing
bounce-back-reflection of the populatioNsat solid walls
[25,26] For the simulations here, flow is started from a zero
velocity ateach node inthe computational domain. A pressure
gradient or forcing factor drives the fluid. A uniform force
density in the fluid represents this gradient h@®,26] To
approximate infinitely long media, periodic boundaries are
imposed on pore network sides open to flow. Lateral network
sides are impervious.

In two-dimensional simulations, we consider an orthogo-
nal lattice with eight moving populations and one rest popu-
lation to represent the fluid domain. The orthogonal 9-speed
model is abbreviated by the symbol D2Q9 following the con-

vention of Qian et al[22]. The equilibrium populations for
the D2Q9 model are given by the following equati¢a2]:

N

Tl = Zepl1+3(c; - u) + 3(G - u)(G - u) — S(u-u)] (3
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The fluid density p(x, t) and velocity u(x, t)
are calculated from the populationblj, respectively,
through the relationg(x, 1) = Z?:ONZ‘(X’ 1) andu(x, 1) = Fig. 1. U_npertur_bed two—dimensior)al square n_etwork osk.’% nodes dec-

1/ p(x, t))Z?ZlNi(X, £)Gi. As in previous work26], we se- orated with a unifornU(1, 2) pore size distribution function.
lectw =1.85 for all the simulations discussed in this work.
Once the steady state is reached, the fluid permeability evolution of pore space of the square networKig. 1under
is calculated using Darcy’s layL7,18], i.e.,u=—(k/n) VP, various shrinking intensities ranging from weak to strong.
whereVP is the macroscopic applied pressure gradient. Fig. 3 shows the evolution of th&J(1, 2) distribution, for
larger networks of 1,000,000 pores, as shrinking of various
intensities reduces pore size and thus porosity.

4. Results and discussion TheU(1, 2) distribution shows a smooth evolution when
the pore network suffers smooth shrinking, i.e.,f6r0.99,

Pore size distribution and pore space connectivity are fun- asFigs. 2 and 3aeveal. The distribution remains unimodal
damental for a suitable geometric-topologic representation and asymmetrically centered around a mean pore size that
of porous materials. Pore space connectivity should not bedecreases with shrinkin§ig. 3a shows increasing asymme-
very sensitive to shrinking or compaction unless the processtry of the distribution at early stages of the shrinking process;
is severe. In this work, the idealization is used that the pore such asymmetry decreases markedly towards the end of the
space connectivity remains unchanged except when the deprocess. This result is suggestive of pore spaces able to con-
formation process leads to pore closing. Fluid topology how- serve their original structural characteristics under smooth
ever does change significantly even when shrinking is no thatshrinking (sed-ig. 2 for A =0.99). It is highly probable that
severe. Thus, for a fixed pore space connectivity, the macro-real porous materials under this kind of deformation show
scopic bulk- and single-phase transport properties in a partic-no significant pore structural differences, beyond the obvi-
ular state of the system, i.e., fluid topology, are defined from ous porosity change, in two stages of its shrinking history.
its pore size distribution function. From here derives our inter- Nevertheless, the sole observation of the evolution of the dis-
estin studying the evolution of this function in pore networks tribution is not enough to establish definitive conclusions.
subject to shrinking processes of controlled intensity. Later we see that the effective pore length of each medium,

Porous materials can be classified according to the charac-which fixes the scale of permeability, is the key property to
teristics of their pore populations before and during shrink- determine the existence of porous microstructure transitions
ing. Some materials display a noticeably wide distribution as shrinking advances.
of pore sizes, they are heterogenous; others however have a The situation changes significantly when the shrinking oc-
narrow distribution, i.e., they display a relatively small de- curs with greater intensity, here characterized by small values
gree of heterogeneity. Another characteristic is the degree ofof A. Fig. 30—e shows that the(1, 2) distribution evolves to-
asymmetry of the distribution or skewness that reveals coex-wards a multimodal function as a result of the appearance of
istence of pore populations with significantly different size. new populations of smaller-sized pores which coexist with
One of these populations, generally the largest, controls thepart of the primitive pore population of the material. The ini-
macroscopic properties of the material. Some materials how-tial pore population diminishes with shrinking but conserves
ever exhibit a somewhat uniform distribution; for these it is its original shape. The size distribution of these pores remains
difficult to establish a characteristic pore size controlling the unimodal and centered symmetrically around the initial mean
macroscopic properties of the material because nearly iden-pore size; its standard deviation increases at the beginning of
tical pore fractions of each size coexist. The evolution of a the shrinking and diminishes towards the end of the process.
distribution depends mainly on the elastic properties of the The new pore populations or modes of the size distribution
material and on the intensity of the shrinking process. In the grow at expenses of the larger-sized pore populations. The
simulations here the shrinking factoaccounts forthesetwo  shape of these new modes is a replica on smaller scale of
characteristics. the mode feeding them. A pore population or mode appears,

Fig. 1 shows an initial unperturbed two-dimensional grows, reaches a maximum size, decreases, and disappears
square network of 12 25 nodes decorated with a uniform  with shrinking. The separation of pore populations is more
U(1, 2) pore size distribution functiorkig. 2 displays the pronounced for the case of shrinking with 0.3. The ex-

%
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Fig. 2. Sequences of pore space microstructures for two-dimensional square networks undergoing shrinking. Network 25misdées. Pore size distribution
of the unperturbed networlE{g. 1) is a uniformU(1, 2) function. Shrinking factors from left to right are 0.99, 0.5, 0.3, 0.1, and 0. Relative porosities for
microstructure images on a given file are indicated at the left.
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fir)

(d)

Fig. 3. Evolution of a uniformJ(1, 2) pore size distribution in a large two-dimensional square network for a range of shrinking factors (a) 0, (b) 0.1, (c) 0.3,
(d) 0.5, and (e) 0.99.
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treme case fok =0, Fig. 3e, corresponds to the classic per-
colation process; the net effect is the split of the initial pore

231

The results irFig. 4suggest that weak shrinking= 0.99,
produces media resembling the unshrinked original media,

population in two, one for the open pores and another for the i.e., all the important details of the media remdjyevolves
closed pores. According to these results, pore spaces are uneontinuously a® is decreased with shrinking. An observer
able to conserve their original structural characteristics when of the medium at any level af, beyond the obvious reduc-

exposed to severe deformation processds@< shows for
small values of.. Porous materials at contiguous levels or
stages of this type of shrinking may show differences beyond
the porosity if different pore populations dominate their dis-
tributions of pore sizes, the definitive answer for each pore
network is obtained from the evolution of the effective length
with shrinking.

tion of ¢, would not perceive significant geometric-topologic
changes in the pore space respect to the original space. The
porous microstructure retains its characteristics throughout
the shrinking procesgig. 3a support this idea, pore size dis-
tribution remains unimodal and the shrinking effect is limited

to reducing porosity. In other words, the porous microstruc-
ture “remembers” its primitive form. From a geophysical

Shrinking is defined as strong or intense when it causespoint of view what we called weak shrinking is simply a

radical changes in the porous microstructure of a material.
The behavior of wide pore size distributions is different from
that exhibited by narrow distributions for the same shrinking
factor when this value is smdlb,7]. Thus, the value of the
shrinking factor alone is insufficient to conclude respect to
the intensity of a shrinking process. The intensity is defined
mainly by two aspects: the elastic properties of the mate-
rial and the force applied on the material, these two define
the shrinking factoi. and the width of the initial pore size
distribution. Thus, for two materials presenting distributions
of different width but of equal minimum pore size it is more

smooth diagenetic process that redugethe class however
remains unchanged; for instance a sandstone continues be-
ing a sandstone although with smaller porosity. It is worth
mentioning that the reduction ¢ffrom 1 to O for the smooth
shrinking ¢. = 0.99) is possible only within the framework of
the proposed model. In fact a smooth shrinking regime re-
ducesp of a material until a finite limit different from zero,
but in the process the porous microstructure retains the char-
acteristics of the primitive material.

As shrinking intensity increases, the caseArsf0.5 in
Fig. 4, the behavior of; becomes erratic, with numerous

likely that shrinking processes produce new modes in the nar-and thus far unknown inflectionkig. 3o suggests these in-

rowest distribution for the same This effect has important

flections are consequence of the appearance of new pore size

consequences on the behavior of the transport properties oflistribution modes dominating the original single-mode pore
pore networks since if some of these new modes with smaller size distribution and thus the porous medium geometric prop-

pores dominate the total pore population then the material
may suffer a transition in its porous microstructure.

Fig. 4 shows the evolution of the single effective or crit-
ical pore length of large two-dimensional networks subject
to shrinking processes from weak to strohgis calculated
from MC simulations of mercury injection experimenks.

erties. As shrinking intensity increasess 0.5, these inflec-
tions inl¢ result in discontinuities revealing clear pore space
microstructure transitions.

The results irFig. 4for strong shrinking regime$,< 0.3,
reveal clear transitions i as¢ decreases with shrinking.
lc is continuous by parts only, exhibiting transitions at finite

andg are displayed normalized respect to the properties of the critical porosities, pseudo-critical strictly. These transitions

unperturbed networks. Networks are 60600 nodes deco-
rated with the uniform pore size distributidi(1, 2).
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Fig. 4. Effective pore length vs. porosity for a two-dimensional square net-
work decorated with the initiaU(1, 2) pore size distribution for various
shrinking factors.

are associated with strong changes in the distribution of pore
sizes, including the appearance of new modes in the distribu-
tion asFig. 3c—e shows. Continuous pieceslgtorrespond

to structurally different porous media. A discontinuity marks
a transition from a more “open” porous microstructure to a
more “closed” one, the size of the pores controlling the trans-
port properties of the latter decreases sharply. The new mi-
crostructure “forgets” its origin, its memory is only enough to
remember the microstructure at the beginning of the continu-
ous piece of to which it belongs. From a geophysical point
of view what we refer here to strong shrinking may be associ-
ated with strong diagenetic processes that not only reduce the
porosity but also transforms one porous microstructure into
another changing its class or lithology in the process. For
example, the geophysical and geochemical transformation
of a weakly cemented clean sand into a strongly cemented
mineral-inclusion-rich sand changes a porous microstructure
into a radically different one. As in the case of weak shrink-
ing, the reduction of porosity from 1 to 0 and the multiple
microstructural transitions of pore space for strong shrinking
are possible only within the framework of the model. Actually
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Table 1 Nextwe presentresults of the evolution experienced by the
Pseudo-critical porosities at whidg becomes discontinuous for a two- permeability of pore networks as the pore space is shrinked. In
dimensional square network decorated with the initi§l, 2) pore size . . .

S ) o the cases studied the results of MC simulations are compared
distribution for various shrinking factors . i . .

with estimations based on the LB method. The MC simula-

tion results are based on large square networks 082280
1stinflection ~ 2ndinflection  3rdinflection ~ nodes. The LB calculations are based on smaller square net-

Shrinking factor Pseudo-critical porosities

0 05 - - works of 12x 25 nodes. The correct performance of the LB
01 0.5362 0.2230 0.0924 scheme employed here has been tested with several numerical
0.3 0.6157 0.3107 0.1600 experiments (sef@8] for details) Fig. 5shows the sensitivity

0.5 0.7071 0.4322 0.2637 e X .

0.99 . - B of the LB permeability of two-dimensional square networks

of 12 x 25 nodes to factors such as forcikgd. 5a) and pore
space discretizatior{g. 5). Results in these figures corre-
a strong compaction regime reduces the porosity of a materialspond to the unperturbed networkHig. 1 For this network
until a finite limit different from zero, but in the process it the optimum forcing factor and lattice discretization are 0.05
can produce one or more transformations of microstructures.and 2030 (along the main flow) 1014, respectively. Results
The strong shrinking produces richly connected pore spacesshow that lower porosity networks are more demanding on
at high porosity and poorly connected ones at low porosity. discretization for a correct representation of flow therein.
Table 1presents the first three pseudo-critical porosities, ~ Fig. 6 presents a comparison of MC and LB
seeFig. 4, atwhich discontinuities ik, occur. Discontinuities ~ permeability—porosity data for square networks decorated
are clearer as — 0, i.e., when shrinking is strong. with an initial narrow distribution of pore sizg(1, 2) for
The effective pore length of a porous material and its tran- five shrinking factors, i.eA =0, 0.1, 0.3, 0.5 and 0.99. In
sitions during a shrinking process are closely related to the all cases of, the LB permeability tracks the M&-¢ curve
permeability of the material, and its pursuit allows to estab- extremely well.
lisha clear distinction between highly deformable andweakly ~ Fig. 6a shows that fon. =0.99 the permeability of the
deformable materials. This new transition, apparently of first square network follows a simple power-law type dependency
order, that finds support in experimental data in the litera- With the porosity, that iskoc¢™. A single value ofm suf-
ture, was first identified by Rozd8,7]. From Fig. 4 it is fices to describe the relatiok¢ for any porosity in this
easy to establish an analogy between the transition of poroudype of shrinking. The value for this exponentis=3, the
microstructures and for instance the first-order transition in Kozeny—Carman limit. A close inspection Big. 6o shows
fluid phases. Finally, after observing the non-trivial behavior that for A =0.5 more than one value oh is necessary to
of I of pore networks during shrinking, especially its capac- describe thek—p relation. For the high porosity range, be-
ity to respond to microstructural changes, Rozas concludedtween the pseudo-critical porosig =0.7071 (sedable 1
that it is the appropriate length scale to predict permeabil- andFig. 4 and¢ =1, again the exponent ia= 3. For lower
ity and other porous media transport properties. To the light porosities, below =0.7071,m> 3. Similar is the situation
of these results neither the hydraulic pore diameter nor thefor 2 =0.3inFig. 6c, the lower value for the exponentis= 3
length lambdg27], based on electrical measurements, are and occurs in the high porosity range between the pseudo-
able to capture the wealth and complexity of pore spaces un-critical porosity ¢.=0.6157 (se€Table 1and Fig. 4) and

dergoing microstructural transitions. ¢=1. The inflections at lower porosities ig. 6b and c
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Fig. 5. Sensitivity of lattice Boltzmann permeability of two-dimensional square networksxo®25nodes to (a) forcing factor for various lattice sizes and (b)
lattice size for forcing factor 0.05.
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are not first-sight apparent. Far=0.1 however a nonlinear  process. Inflection points at lower porosities tiiarr 0.5362
behavior of the permeability curve Kig. 6d is clear. The in- are not shown irfrig. 6d. More than one value ohis neces-
flection point at the relatively high pseudo-critical porosity, sary to describe the-¢ relation, the lower value im= 3 and,
¢:=0.5362 is a consequence of different pore populations as expected, occurs when porosity tends to 1. As mentioned
controlling permeability in different stages of the shrinking before, the narrow distributiod(1, 2) shows multiplicity of
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modes or pore populations far=0.1 (Fig. 3d), which in was deduced for three-dimensional media, specifically rocks
principle explains the inflection points and the existence of and consolidated sanls].
different porous microstructures before and after these points.  Fig. 7 displaysk versu5cll§/F for 2D square networks
Fig. 6d shows that foi. =0 the behavior of permeability is  decorated withJ(1, 2) pore size distribution.
that of the transport properties in the classic percolation prob-  Results inFig. 7 show that Eq(6) is valid for» =0.99 in
lem, the novelty being that the critical point for all the cases the entire porosity range and fox 0.99 only in the porosity
studied in the square network occurs at a normalized poros-range between the first pseudo-critical and 1 (8gs. 4 and 6
ity, equal to 0.5, identical to the percolation threshpddn andTable J. Fori <0.99,Fig. 7displays a significant depart
the same network. The same occurs in the case of the electrifrom the 45 line in the porosity range between 0 and the first
cal conductivity[6]. When the pore volume of the network pseudo-critical, exactly in the region not studied thus far.
has been reduced in a 50%, an infinite conductive cluster of Fig. 7 emphasizes the need for better LB data, particularly
pores does not exist, and implies necessarily that half of theat low porosity. Rozafs—8] have shown for various network
connections have been eliminated. We have proved that wherdimensionalities, pore size distributions and shrinking factors
A =0 the normalized porosity is exactly equal to the fraction thatallk — cllg/F curves show the same behavior aBii. 7.
p of conductors in the square network. Qualitatively, when The prefactor in Eq(6) is c1 = Fo/12,, calculated in the
A =0 the shrinking is equivalent to a random elimination of ¢ — 1 limit. The results irFig. 7 are important because they
bonds in the network. It is a percolation process and thus thetest for the first time the universality of the K&T relation.
conductor—insulator transition state of the network, which The practical importance of this result is easy to anticipate.
is independent of the distribution of pore sizes, the defini- When Eq.(6) applies, the only parameter of this relation,
tion of the conductance elements, and of some other detailshas physical meaning and can be determined with a single
depends exclusively on the dimensionality of the network. experimentak—¢ data point.
In Fig. 6e, the lower value for the exponent in the relation According to the discussion above, a continuous section
ko ¢™Mis m=3 and, as expected, occurs when porosity tends of Ic.—¢ curve corresponds to a porous microstructure that
to 1. only reduces its porosity during a shrinking process. This mi-
An important body of experimental permeability data for crostructure controls the permeability of the material in that
diverse classes of porous materials under compaction showsection. In the transition, the control of permeability switches
the beginning of a permeability inflection or transition, i.e., from this microstructure to another. When the MC and LB re-
the change that occurs when one porous microstructure con-sults are represented in the fokmg versusp, see schematic
trolling permeability lets a new microstructure assumes this in Fig. 8, a linear behavior is observed in the sections corre-
function. In general, the literature has denied physical sensesponding to each permeability regime, with slight deviations
to the steep reduction of permeability in the proximity of an near the transition regions. That is, the following relation is
inflection point. In most cases the data measured is not re-valid for each porosity section,
ported, and when reported are explained as being measured in
the zone were they are not reliable. In the need to fit a power- k
law relation of the kindk oc ¢™, permeability data in the zone 2 = c2(¢+0) (7)
of steep decay are simply discarded. In some cases the rela-
tionkoc 9™ is adjusted by porosity sections. Recently Mavko
and Nur[10] adjusted the relatioR o (¢ — ¢¢)® to various

1,0 T T T T Al
sands_tones. with rem_arkable succesgsis a pseudo-critical Monte Carlo -.&"‘
porosity acting as a fitting parameter. Mavko and Nur never- o =00 o
theless do not provide a physical meaningderthey do not 08 AT .;;{:"
recognize the existence of an effective length of the pore space . 4-05 . -.oa‘

A 1=0.99 v n

and even less suggest the existence of an inflection pointto |
lower porosity thamp. in the permeability curves examined. ¢
On the simulation ground, Wong et §l4] could not calcu- 2
late permeability fon. <0.25 with the shrinking tube model

Lattice Boltzmann

and thus missed the transitions completely. The macroscopic 0 4-00
properties of pore networks are related next through scaling o2 | A
laws. o i-05
First we consider the K&T relatiofb] between perme- oA
ability, formation facto~ and effective length, i.e., 0’00‘,0 08 1.0
lg (*llcz/F
k = c1ko—= 6
ko (6)

. . L Fig. 7. Katz—Thompson permeability scaling for a two-dimensional square
whereF =o,/0, o is the electrical conductivity of a porous  network decorated with an initial radii distributidd(1, 2) for different

medium saturated with fluid with conductivigyy. EqQ. (6) shrinking factors.
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»
< Before a transition i
/// — — After a transition 5. Conclusions
% 4 6 New graphical representations lof/2 versusg — ¢, for

various pore networks under shrinking display straight and
Fig_. 8. Sche_n”_latic repr_esentation of the me_thod for determining pseudo- parallel lines, with a slope of 1, suggesting that a universal re-
critical porosities at a given pore length transition. lationship betweehy 12 andp may be possible. Atthe hartare

pore space microstructure transitions driven by the shrinking
whereb is thek/ I intercept of this trial linear function. Now, ~ process. These transitions are associated with changes in the
if a given linear permeability regime is extrapolated until a distribution of pore sizes, more precisely in the appearance
hypothetical state of porosity for which permeability is zero, of new modes in the distribution eventually controlling the
the resultis = —@,. Thatis, the terng., here denominated  transport properties. The new pore populations or modes of
pseudo-critical porosity, corresponds to the porosity of a hy- the distribution grow at expenses of the larger-sized pore pop-
pothetical conductor—insulator transition that results from the ulations. A pore population or mode appears, grows, reaches a
extrapolation of the given permeability regime. The corre- maximum size, decreases and disappears with shrinking. Our
spondingp.. for each permeability regime may be determine results show that the old theory of Kozeny—Carman, derived

in the same manner. for oversimplified porous media, contains some elements of
Then, we postulate the following ansatz for the permeabil- the newk—¢. The problem is that the intrinsic limitations
ity: of the Kozeny—Carman relation have been increased by the

need to fit scarce experimental data with aims of interpolat-
k ca(d— o) ®) ing and extrapolating information. This need has remained
2z 2 ¢ for more than five decades and continues at present in spite
of the clarifying works of Katz and Thompsd¢h], Wong et
The prefactor in Eq8)iscz = (ko/1%0) /(o — ¢L), whereko, al.[14] and Roberts and Schwaf29] by the end of the 1980s
Ico, andeo pertain to the initial point ang, to the pseudo-  and beginning of the 1990s. Risky practices in the process-
critical porosity of each permeability regime. ing of permeability data include (1) the use of the theory of
As it is shown inFig. 9, Eq. (8) has universal character Kozeny—Carman with a constant effective lenigthlong the
and is suitable for representing experimental data for eachentire process of permeability reduction, (2) the simple re-
permeability regime or section. Rozgs-8] has shown this  placement of thé:; associated to the pore space by the mean
character for various network dimensionalities, pore size dis- size of particles or grains that conform the solid material
tributions and shrinking factors. if granular or of pseudo-grains if the solid material is con-
Relation(8) is an alternative to the K&T relation to ex-  solidated with undefined grain, and (3) the extrapolation of
trapolate and to interpolate permeability with certainty from permeability ignoring the existence of microstructure transi-
experimental data. The parameters of this relation may be in-tions. Results in the literature are varied, but in general when
ferred from three experimental points; data on conductivity is the adjustment df—¢ data is carried out by means of power-
not necessarysig. 9emphasizes strongly the need for better law relations using a constalgtand avoiding a parameter of
LB data, particularly at low porosity and near pseudo-critical transition porosity, the sensitivity of the exponent to porosity
porosities. is great. In some cases exponents from 3 to 8 are required
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for a given material (see, e.[]). These high exponents, to

the light of the results presented here, are necessary because

the data adjusted is in the vicinity of a permeability transition

point. This situation is especially dangerous because implies
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